

Contents lists available at ScienceDirect

# **Catalysis Today**

journal homepage: www.elsevier.com/locate/cattod



# The reduction of NO<sub>x</sub> stored on LNT and combined LNT-SCR systems

## Pio Forzatti\*, Luca Lietti

Dipartimento di Energia, Laboratory of Catalysis and Catalytic Processes, Centro NEMAS – Nano Engineered MAterials and Surfaces, Politecnico di Milano, P.zza L. Da Vinci 32, 20133 Milano, Italy

#### ARTICLE INFO

Article history: Available online 8 January 2009

Keywords: Lean  $deNO_x$   $NO_x$  reduction mechanism LNT systems  $Pt-Ba/Al_2O_3$  catalyst Combined LNT + SCR catalysts

#### ABSTRACT

The adsorption–reduction by  $H_2$  of  $NO_x$  stored on a model LNT Pt–Ba/Al<sub>2</sub>O<sub>3</sub> catalyst sample and on a combined LNT + Fe-ZSM5 SCR catalyst is investigated in this work. The storage of  $NO_x$  over the LNT Pt–Ba/Al<sub>2</sub>O<sub>3</sub> catalyst leads to nitrite formation at low temperatures, and to nitrate at high temperatures (above 300 °C). The stored  $NO_x$  are reduced mainly to  $NH_3$  at low temperatures, and to  $N_2$  at high temperatures. In line with previous data and according to experiments carried out with  $H_2$  and  $H_3$ , a two-step in-series pathway for nitrogen formation is proposed involving at first the fast formation of ammonia upon reaction of  $NO_x$  with  $H_2$ , followed by the slower reaction of the so-formed ammonia with the stored  $NO_x$  leading to  $N_2$ . This two-step in-series pathway together with the integral behaviour of the reactor accounts for the temporal evolution of the products which is observed during regeneration of LNT catalysts.

A Fe-ZSM5 SCR placed downstream the LNT catalyst stores  $NH_3$  released during the rich phase from the LNT sample. The stored ammonia is effectively converted to  $N_2$  during the subsequent lean phase, due to the occurrence of the SCR reaction over the Fe-ZSM5 catalyst bed. Hence the presence of a SCR catalyst layer placed downstream a LNT sample leads to the twofold benefit of reducing the  $NH_3$  slip and to increase the  $NO_x$  removal efficiency. These advantages are most important at low temperatures, and tend to vanish at high temperatures where the  $NH_3$  slip is less important.

© 2008 Elsevier B.V. All rights reserved.

### 1. Introduction

The transportation sector and in particular diesel-equipped vehicles are blamed as one of the primary sources of  $NO_x$  emission. For this reason regulations to control  $NO_x$  emission in industrial countries are becoming very severe: in Europe, the next Euro 5 regulations (2009) and the subsequent Euro 6 rules (2014) will require a threefold decrease of  $NO_x$  emission for diesel passenger cars, from the current 0.25 g/km set by Euro 4 down to 0.08 g/km (Euro 6).

Three way catalysts (TWC), which are used in the case of stoichiometric gasoline engines, are not effective in the reduction of  $NO_x$  under lean conditions, i.e. in the case of diesel engines. Viable solutions for the control of  $NO_x$  in this case are the urea-SCR technique, which accomplishes the  $NO_x$  reduction by injecting urea (a precursor of  $NH_3$ ) in the exhaust gases, or the  $NO_x$  storage reduction (NSR) or lean  $NO_x$  trap (LNT) system [1–3]. In such a technique the removal of  $NO_x$  is realized under cyclic conditions, by alternating long lean periods during which  $NO_x$  are adsorbed in the form of nitrites and nitrates with short excursions under rich

conditions during which the stored  $NO_x$  are reduced to  $N_2$ . A typical NSR catalyst consists of a  $NO_x$  storage component, such as an alkaline or alkaline earth metal oxide (e.g. K and Ba), and of a noble metal (Pt) that catalyses the oxidation of NO, CO and unburned hydrocarbons (UHC) during the lean phase, and the reduction of the stored  $NO_x$  during the rich phase. These active elements are dispersed on a high surface area support, such as  $\gamma$ -alumina. Commercial catalyst formulations may include other components such as  $ZrO_2$  or  $ZrO_2$ , Pd and Rh,  $ZrO_2$  (2,4).

Although urea-SCR is preferred for heavy trucks and mini-van, LNTs are cheaper for small engines [1]. In fact an advantage of this technology with respect to the SCR technique is that LNTs do not make use of an ammonia precursor as a reductant, so that no relevant layout modifications are needed. Still the resistance to thermal ageing and sulphur poisoning of NSR catalysts need to be improved.

Accordingly in the last few years the potential of the LNT technology motivated extensive investigations by the academic and the industrial communities: efforts have been devoted to the analysis of both the storage of  $NO_x$  and of the subsequent regeneration of the trap, during which adsorbed  $NO_x$  are reduced to  $N_2$  although the formation of other by-products (in particular  $NO_x$  is also observed. As a matter of fact, the chemistry and mechanisms involved in the reduction of stored  $NO_x$  are still a matter of debate:

<sup>\*</sup> Corresponding author. E-mail address: pio.forzatti@polimi.it (P. Forzatti).

it has been suggested that the reduction of stored NO<sub>x</sub> over NSR catalysts implies at first the release of  $NO_x$  from the catalyst surface in the gas phase, followed by the reduction of the released  $NO_x$  to N<sub>2</sub> or other products. Based on this scheme, different proposals have been advanced to explain the nitrate decomposition and the reduction of the released NO<sub>x</sub> as well. In particular, the reduction of NO<sub>x</sub> in a rich environment is thought to occur according to the mechanism of three-way catalysis. However, these routes can hardly explain the very high N2 selectivity and the temporal sequence of products which is typically observed upon regeneration of LNT systems under nearly isothermal conditions when hydrogen is used as a reductant (with the evolution of ammonia following that of nitrogen). Recently, the involvement of ammonia in the reduction of the stored nitrates by H<sub>2</sub> has been considered [5-9], and a mechanism which is able to account for the high selectivity of the reaction and the temporal sequence of the products during the rich operation has also been proposed [5,7,9]. According to Cumaranatunge et al. [5] and to Mulla et al. [9] a regeneration front develops in the trap during the rich phase, which travels along the trap. Ammonia and N2 can be simultaneously formed in the H2-rich zone of the front, according to previously suggested mechanisms for three-way catalysts. However, NH<sub>3</sub> may further react with the nitrates stored downstream the front, leading to the formation of N<sub>2</sub>. This would explain the temporal sequence of the products formation with NH<sub>3</sub> breakthrough observed after N<sub>2</sub> production when the stored NO<sub>x</sub> start to deplete and are insufficient to react with the NH3 formed upstream. A similar scheme has also been provided by some of us [7,8], with the formation of an H<sub>2</sub> front travelling along the reactor axis. Moreover, clear evidences have been provided on the fact that N2 formation involves the occurrence of an in-series twostep molecular process involving at first the formation of NH<sub>3</sub> upon reaction of H2 with the stored nitrates, followed by the reaction of the so-formed ammonia with nitrates located downstream the H<sub>2</sub> front. This reaction leads selectively to N2. Notably step 1 (i.e. NH3 formation) has been found to be much faster than the second step (nitrogen formation upon reaction of nitrates with NH<sub>3</sub>). Accordingly the regeneration of the trap proceeds both in the part of the reactor in which nitrates are reduced by H<sub>2</sub> to give ammonia and in the zone in which the ammonia formed upstream reacts with nitrates leading to N2.

In order to gain further insight on the mechanisms governing the reduction of the stored NO<sub>x</sub> and on the role of NH<sub>3</sub> in the process, the reactivity of NO<sub>x</sub> stored over a model Pt-Ba/Al<sub>2</sub>O<sub>3</sub> catalyst towards H<sub>2</sub> has been further analyzed in this work. In particular in previous experiments [7,8] the reactivity with H<sub>2</sub> of NO<sub>x</sub> stored at fixed temperatures, i.e. 250 °C and 350 °C, has been analyzed at different temperature levels. In this work we planned to investigate the reactivity of the stored NO<sub>x</sub> in a wider temperature range, and during isothermal cycles in which both the NO<sub>x</sub> storage and reduction are carried out at the same temperature. For this purpose, lean-rich cycles (i.e.  $NO_x$  adsorption-reduction experiments) have been carried out at different temperatures, while carefully analyzing the formation of the various reaction products. The adsorption and the reduction stages have been separated by an inert purge in between, so to obtain more clear indications on the reaction pathways ongoing during both the  $NO_x$  adsorption and reduction phases.

Finally, having observed during the rich step and at low temperatures the formation of significant amounts of NH<sub>3</sub>, which leaves the catalyst unreacted (NH<sub>3</sub> slip), the reactivity of a combined LNT–SCR systems in which the model Pt–Ba/Al<sub>2</sub>O<sub>3</sub> LNT catalyst sample is placed upstream a commercial SCR catalyst has also been investigated. In principle, by adopting this catalysts configuration, NH<sub>3</sub> formed over LNT during the rich phase can be stored on the SCR catalyst, and consumed in the subsequent lean

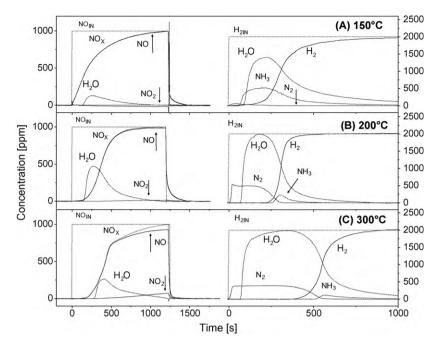
phase [10,11]. This might lead in principle to both a decrease of the  $NH_3$  slip and a simultaneous increase of  $NO_x$  removal.

#### 2. Methods

## 2.1. Materials

The model Pt–Ba/Al $_2$ O $_3$  (1/20/100, w/w) LNT catalyst has been prepared by impregnating a binary Pt/Al $_2$ O $_3$  sample with an aqueous solutions of Ba(CH $_3$ COO) $_2$  (Strem Chemical, 99%), followed by drying at 80 °C and calcination at 500 °C for 5 h. The Pt/Al $_2$ O $_3$  has been obtained by impregnating a  $\gamma$ -Al $_2$ O $_3$  carrier calcined at 700 °C (Versal 250 from UOP, surface area of 200 m $^2$ /g and pore volume of 1.2 cm $^3$ /g after calcinations at 700 °C), with a solution of Pt(NH $_3$ ) $_2$ (NO $_2$ ) $_2$  (Strem Chemicals, 5% Pt in ammonium hydroxide) followed by drying at 80 °C overnight and calcination at 500 °C for 5 h. The calcined Pt–Ba/Al $_2$ O $_3$  sample has a surface area near 160 m $^2$ /g and a pore volume of 0.82 cm $^3$ /g. Further details on the catalyst preparation and characterization are reported elsewhere [12].

The SCR catalyst is a Fe-ZSM5 sample purchased from Zeolyst International (Fe loading near 1%, w/w, surface area of  $200 \text{ m}^2/\text{g}$  and pore volume of  $10 \text{ cm}^3/\text{g}$ ).


### 2.2. Apparatus and procedures

The  $NO_x$  adsorption–reduction tests have been performed in a quartz tubular fixed-bed microreactor connected to a mass spectrometer for complete analysis of reactants and products [12].

Reactivity tests with either a single LNT or SCR catalyst layer (Pt–Ba/Al<sub>2</sub>O<sub>3</sub> or Fe–ZSM5) or with a double-bed LNT + SCR arrangement (in which the Fe–ZSM5 SCR catalyst is placed downstream the Pt–Ba/Al<sub>2</sub>O<sub>3</sub> sample) have been carried out. In the case of the single-bed experiments 60 mg of catalyst (80–100  $\mu$ m) have been loaded into the reactor, whereas in the case of the double-bed configuration 60 mg of each catalyst have been used (total catalyst loading of 120 mg). The catalyst temperature has been measured by means of a thermocouple directly immersed in the catalyst bed; in the case of the double-bed experiments the thermocouple has been located in the upper bed. Due to the dilute conditions employed in our experiments, thermal effects have also been found to be negligible upon lean–rich cycling (<2 °C). Accordingly the experiments have been performed under nearly isothermal conditions.

Lean–rich cycles have been carried out at different temperatures. During the lean phase, a pulse of NO (1000 ppm) has been admitted to the reactor in flowing He + 3% (v/v)  $O_2$  until catalyst saturation. Then after a He purge at the same temperature, catalyst regeneration (rich phase) has been carried out with H<sub>2</sub> (2000 ppm in He). Before each test, the catalyst samples have been conditioned by performing a few adsorption/regeneration cycles. Conditioning lasted until a reproducible behaviour has been obtained; this typically required 2–3 cycles.

In a different set of experiments, after catalyst conditioning at  $350\,^{\circ}$ C,  $NO_x$  have been adsorbed at the same temperature, followed by a He purge to provoke the desorption of weakly adsorbed species. Then the reduction of the adsorbed  $NO_x$  species has been performed both with  $H_2$  and with  $NH_3$  at different temperatures, in the range  $100-350\,^{\circ}$ C. This allowed the analysis of the reduction process starting from the same loading and nature of  $NO_x$  adsorbed species. Accordingly during the He purge after the  $NO_x$  adsorption at  $350\,^{\circ}$ C the catalyst temperature has been set at the desired value; then a rectangular step feed of  $H_2$  (2000 ppm in He) or  $NH_3$  (1000 ppm in He) has been admitted to the reactor. When the reduction process has been completed (i.e. when the concentration of the products exiting the reactor was negligible), the  $H_2$  or  $NH_3$ 



**Fig. 1.** Lean–rich cycles carried out over the Pt–Ba/Al<sub>2</sub>O<sub>3</sub> catalyst sample at 150 °C (A), 200 °C (B) and 300 °C (C). Lean phase: 1000 ppm NO in He + 3% (v/v) O<sub>2</sub>; rich phase: 2000 ppm H<sub>2</sub> in He. Catalyst loading 60 mg, flow rate 100 cm<sup>3</sup>/min (@ 1 atm and 0 °C).

flow has been stopped and the catalyst has been heated at 350 °C under He flow. Eventually a new  $H_2$  step (2000 ppm in He) has been fed to the reactor at 350 °C to complete the reduction of the residual amounts of stored  $NO_x$  left after the previous reducing treatment, if any. In fact dedicated experiments showed that this procedure was able to completely remove the stored  $NO_x$  species: accordingly the extent of  $NO_x$  reduction during the rich phase at each temperature (efficiency in the reduction of the stored  $NO_x$ ) could be evaluated.

Notably, due to the dilute conditions employed in the runs, the experiments have been performed under nearly isothermal conditions in the catalyst bed, i.e. in the absence of any significant thermal effects upon the lean/rich switches.

A flow of 100 cm<sup>3</sup>/min (@ 1 atm and 0 °C) has always been used during all experiments, both in the case of the single-bed reactor and in the case of the double-bed arrangement.

The selectivity to  $N_2$  of the reduction process has also been estimated. Due to the variations in the product distribution with time, the  $N_2$  selectivity ( $S_{N_2}$ ) has been estimated as time-weighted average according to the following equation:

$$S_{N_2} = \frac{2n_{N_2}}{2n_{N_2} + n_{NO} + n_{NH_3}} \tag{a}$$

In Eq. (a),  $n_{\rm N_2}$ ,  $n_{\rm NO}$  and  $n_{\rm NH_3}$  are the total molar amounts of N<sub>2</sub>, NO and NH<sub>3</sub>, respectively, evolved during the entire reduction phase. N<sub>2</sub>O concentration has always been found negligible in the experiments and accordingly this species has not been included in Eq. (a).

The N-balance, estimated by comparing the amounts of  $NO_x$  adsorbed during the lean phase with those of the N-containing species formed upon reduction of the stored  $NO_x$ , always closed within  $\pm 5$ –10%.

## 3. Results and discussion

## 3.1. NO<sub>x</sub> storage-reduction over Pt-Ba/Al<sub>2</sub>O<sub>3</sub>

The NO<sub>x</sub> storage–reduction over Pt–Ba/Al<sub>2</sub>O<sub>3</sub> has been investigated at different temperatures in the range 150–350  $^{\circ}$ C, and the

results obtained at selected temperatures (150 °C, 200 °C and 300 °C) are shown in Fig. 1. The lean–rich cycles shown in Fig. 1 have been obtained after conditioning of the catalyst at the same temperature with a few adsorption–reduction cycles, until a stable behaviour is obtained.

At the lowest investigated temperature (150 °C, Fig. 1A), upon NO admission to the reactor (t = 0 s) the NO breakthrough is immediately observed. The NO concentration slowly increases with time and eventually reaches the inlet NO concentration value after 1200 s. No significant NO<sub>2</sub> evolution is observed at this temperature. At t = 1250 s the NO inlet concentration is switched off; after the switch a tail is observed in the NO concentration profile, due to the desorption of weakly adsorbed NO<sub>x</sub> species.

During NO adsorption the evolution of water is observed. As discussed elsewhere [2,12], this is due to the uptake of  $NO_x$  on  $Ba(OH)_2$  sites, accompanied by release of  $H_2O$ . The amount of  $NO_x$  stored at this temperature, estimated by difference from the reactor inlet and the outlet  $NO_x$  concentration, is near  $3.78 \times 10^{-4}$  mol/g<sub>cat</sub> (Fig. 2 and Table 1). This corresponds to an overall Ba utilization (i.e. the fraction of Ba involved in the storage to the overall Ba content of the catalyst, by assuming the formation of either  $Ba(NO_2)_2$  or  $Ba(NO_3)_2$ ) close to 15%.

The results obtained upon reduction with  $\rm H_2$  at 150 °C of the  $\rm NO_x$  stored at the same temperature are shown in Fig. 1A, right panel.  $\rm H_2$  is completely consumed upon its admission to the reactor; the  $\rm H_2$  breakthrough is observed near 200 s. Minor amounts of  $\rm N_2$  are immediately observed upon  $\rm H_2$  admission, and after roughly 60 s large quantities of ammonia are detected. Water is also formed during reduction, whereas no appreciable amounts of other

**Table 1** Amounts of stored  $NO_x$  on  $Pt-Ba/Al_2O_3$  catalyst at different temperatures and fraction of surface nitrites.

| Temperature (°C) | Stored $NO_x$ (mol/g <sub>cat</sub> ) | % Nitrites |
|------------------|---------------------------------------|------------|
| 150              | $3.78 \times 10^{-4}$                 | ~85        |
| 200              | $5.00 \times 10^{-4}$                 | ~20        |
| 300              | $6.04 \times 10^{-4}$                 | $\sim$ 0   |
| 350              | $6.21 \times 10^{-4}$                 | ~0         |

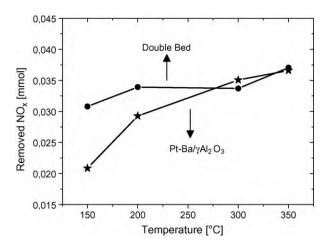



Fig. 2. Amounts of NO $_x$  removed during the lean phase over the Pt-Ba/Al $_2$ O $_3$  catalyst and the Pt-Ba/Al $_2$ O $_3$ -Fe-ZSM5 double-bed arrangement.

products (e.g. NO and  $N_2O$ ) are observed at the reactor outlet. Accordingly at this temperature the average  $N_2$  selectivity of the reduction, estimated according to Eq. (a), is very poor (below 10%).

The overall  $H_2$  consumption and the corresponding  $NH_3$  and  $N_2$  formation is due to the reduction of adsorbed  $NO_x$  species, according to the stoichiometry of the following global reactions:

$$Ba(NO_2)_2 + 6H_2 \rightarrow 2NH_3 + BaO + 5H_2O$$
 (1)

$$Ba(NO_2)_2 + 3H_2 \rightarrow N_2 + BaO + 5H_2O$$
 (2)

$$Ba(NO_3)_2 + 8H_2 \rightarrow 2NH_3 + BaO + 5H_2O$$
 (3)

$$Ba(NO_3)_2 + 5H_2 \rightarrow N_2 + BaO + 5H_2O$$
 (4)

Reactions (1)–(2) and (3)–(4) accounts for the reduction of nitrites and nitrates, respectively, to  $NH_3$  and  $N_2$ . Notably, in reactions (1)–(4) the formation of BaO is envisaged; as pointed out in [12],  $Ba(OH)_2$  is also formed by reaction of BaO with  $H_2O$  according to the following reaction:

$$BaO + H_2O \rightarrow Ba(OH)_2 \tag{5}$$

The formation of  $Ba(OH)_2$  species during the reduction of stored  $NO_x$  is confirmed by the release of water upon NO addition to the catalyst in the adsorption (lean) phase, as previously discussed (Fig. 1)

According to stoichiometries (1)-(4), different amounts of H<sub>2</sub> are consumed when N<sub>2</sub> and NH<sub>3</sub> formation are associated to the reduction of either nitrites (reactions (1) and (2)) or nitrates (reactions (3) and (4)). Thus on the basis of the molar ratio between the amounts of evolved N<sub>2</sub> + NH<sub>3</sub> and of consumed H<sub>2</sub>, from stoichiometries (1)–(4) the ratio nitrites/nitrates in the stored  $NO_x$ can be evaluated, if one neglect any H2 consumption via other routes (e.g. the reduction of PtO to Pt). Indeed it is estimated that this contribution is at least one order of magnitude lower than that involved in the reduction of the stored NO<sub>x</sub>. Calculation showed that nitrites are the most abundant adsorbed species at 150 °C, since they account for near 85% of the overall NO<sub>x</sub> (Table 1). This is in line with previous FTIR studies on the adsorption of NO<sub>x</sub> over the same catalytic systems showing the presence of a large fraction of nitrites when the adsorption is carried out at low temperatures [13]. Accordingly, due to the poor N<sub>2</sub> formation, it is concluded that reaction (1), and to a minor extent reaction (3), account for more than 90% of the overall H<sub>2</sub> consumption.

Significant changes in the  $NO_x$  storage–reduction behaviour are observed upon increasing the temperature. In particular the amounts of stored  $NO_x$  increase upon increasing the temperature:

at 200 °C and 300 °C (Fig. 1B and C, respectively) the  $NO_x$  breakthrough is observed near 150 s and 200 s, respectively; formation of  $NO_2$  is also observed, particularly at 300 °C. A  $NO_x$  storage capacity near  $5 \times 10^{-4}$  mol/ $g_{cat}$  and  $6 \times 10^{-4}$  mol/ $g_{cat}$  is measured at 200 °C and 300 °C, respectively (Fig. 2 and Table 1). The  $NO_x$  storage capacity further increases at 350 °C (6.2  $\times$  10<sup>-4</sup> mol/ $g_{cat}$ ). Notably, as it will be discussed below, the increase in the reaction temperature also leads to a decrease of the amount of nitrites stored on the catalyst surface. Indeed nitrites are estimated to be near 20% of the overall  $NO_x$  stored at 200 °C, whereas only nitrates are present at 300 °C and 350 °C.

Fig. 1B shows the results obtained upon reduction at 200 °C of  $NO_x$  stored at the same temperature. Complete consumption of  $H_2$  is observed and the  $N_2$  outlet concentration immediately increases to a level near 500 ppm upon  $H_2$  admission. The reduction reaction is very fast and minor amounts of  $NH_3$  are observed at the reactor outlet, when the production of  $N_2$  starts to decrease. Accordingly complete selectivity to nitrogen is initially observed, since no appreciable amounts of NO and/or  $N_2O$  are observed: the  $N_2$  selectivity decreases at the end of the reduction process, due to  $NH_3$  formation. The time-weighted average  $N_2$  selectivity of the overall reduction process is near 91% in this case.

On the basis of stoichiometries (1)–(4), it is calculated that nitrites represent roughly 20% of the adsorbed  $NO_x$  species. Notably, the observed  $N_2$  concentration level near 500 ppm which is observed upon complete  $H_2$  consumption is also consistent with the presence of significant amounts of nitrites. Indeed this concentration value falls between that expected from the reduction by 2000 ppm of  $H_2$  of nitrites (reaction (2), 667 ppm) and of nitrates (reaction (4), 400 ppm).

Further increase of the temperature (300 °C, Fig. 1C) favours the  $N_2$  formation at the expense of ammonia, so that at high temperature the  $N_2$  selectivity of the reduction becomes very high (near 95% at 300 °C). Also in this case, however, the  $N_2$  selectivity changes with time, and ammonia evolution follows that of  $N_2.$ 

Notably, upon  $H_2$  admission at this temperature the  $N_2$  outlet concentration reaches the level of 390 ppm. This concentration level well corresponds to the stoichiometry of reaction (4), i.e. to the reduction of nitrates by  $H_2$ . This indicates that at high temperatures  $NO_x$  are stored prevalently in the form of nitrates [14,15].

Similar results have been observed at higher temperatures (350  $^{\circ}$ C, data not shown).

Accordingly the data discussed above pointed out that at low temperatures (150 °C)  $NO_x$  are stored mainly in the form of nitrites, whereas nitrates prevails at high temperatures. Notably, NO<sub>x</sub> adsorbed species are reduced selectively to ammonia at low temperature (the N<sub>2</sub> selectivity is near 10% at 150 °C), whereas N<sub>2</sub> formation prevails at high temperatures (300 °C and above). It may be argued that the observed change in selectivity of the reduction process is affected by the nature and the amounts of stored NO<sub>x</sub>. However, as discussed below (Fig. 3), very similar results have been obtained upon reduction at various temperatures of NO<sub>x</sub> adsorbed at a preset temperature (350 °C, corresponding to the formation of nitrates), and with a similar nitrate loading as well. As a matter of fact even in this case an identical dependence of the N<sub>2</sub> selectivity with temperature is observed, with ammonia and nitrogen formation prevailing at low and high temperatures, respectively.

The observed dependence of the  $N_2$  selectivity with temperature during lean–rich cycles is in line with previous data showing that ammonia is intermediate in the formation of nitrogen upon reduction of nitrates with  $H_2$  [7,8]. This conclusion was mainly derived from the results of temperature programmed surface reaction (TPSR) experiments in which the reactivity of  $H_2$  and of

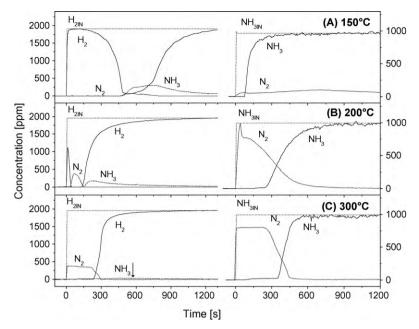



Fig. 3. Rich cycles carried out over the Pt–Ba/Al<sub>2</sub>O<sub>3</sub> catalyst sample at 150 °C (A), 200 °C (B) and 300 °C (C) after NO<sub>x</sub> adsorption at 350 °C. Reduction with H<sub>2</sub> (2000 ppm in He, left-hand side) and with NH<sub>3</sub> (1000 ppm in He, right-hand side). Catalyst loading 60 mg, flow rate 100 cm<sup>3</sup>/min (@ 1 atm and 0 °C).

 $NH_3$  towards nitrates adsorbed over the same  $Pt-Ba/Al_2O_3$  catalyst sample used in this study has been investigated [7,8]. In particular TPSR experiments showed that stored nitrates are easily reduced by  $H_2$  at very low temperatures, leading with almost complete selectivity to the formation of ammonia.  $NH_3$  was also found to be active in the reduction of the stored nitrates, but at higher temperatures if compared to  $H_2$ . Notably, complete selectivity to nitrogen is observed during the  $NH_3$  + nitrate reaction, which occurs according to the overall stoichiometry of the following reaction:

$$3Ba(NO_3)_2 + 10NH_3 \rightarrow 8N_2 + 3BaO + 15H_2O$$
 (6)

Accordingly it is suggested that the reduction of stored  $NO_x$  by  $H_2$  occurs via a two-step pathway which involves a first fast step leading to the formation of ammonia (reaction (3)), followed by the slower reaction of ammonia with stored  $NO_x$  to form nitrogen (6):

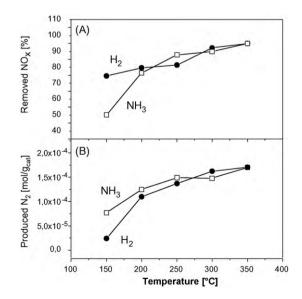
$$Ba(NO_3)_2 + 8H_2 \rightarrow 2NH_3 + BaO \, + \, 5H_2O \eqno(3)$$

$$3Ba(NO_3)_2 + 10NH_3 \rightarrow 8N_2 + 3BaO + 15H_2O$$
 (6)

Notably, the sum of reactions (3) and (6) leads to the overall stoichiometry for the reduction of nitrates to N<sub>2</sub>, i.e. reaction (4):

$$Ba(NO_3)_2 + 5H_2 \rightarrow N_2 + BaO + 5H_2O$$
 (4)

The involvement of nitrates has been suggested in the stoichiometries considered above, but a similar scheme can be envisaged for nitrites as well.


To better analyze these aspects, lean–rich cycles have been performed in which  $NO_x$  have been stored at 350 °C (i.e. in the form of nitrates), and the reduction of the stored nitrates has been accomplished with  $H_2$  and  $NH_3$  at different temperatures, in the range 150–350 °C. The results are shown in Fig. 3 which compares the concentration profiles of hydrogen, nitrogen and ammonia measured at the reactor outlet upon reduction of nitrates stored at 350 °C with  $H_2$  (Fig. 3, left panel) and with  $NH_3$  (Fig. 3, right panel) at selected temperatures (150 °C, 200 °C and 300 °C).

In the case of the experiment carried out with  $H_2$ , at 150 °C (Fig. 3A) the reaction shows a significant induction period. Indeed initially  $H_2$  is detected unconverted at the reactor outlet; then, after 200 s, the  $H_2$  concentration starts to decrease showing a

minimum near 450-750 s. The decrease of the  $H_2$  concentration is accompanied by the evolution of  $NH_3$  and of minor amounts of  $N_2$ ; however, a delay is observed between  $NH_3$  (and  $N_2$ ) evolution (near 450 s) and the  $H_2$  uptake (200 s).

The observed induction period possibly indicates that  $H_2$  is initially adsorbed and activated on the catalyst surface. One may speculate that at this low temperature nitrates are initially reduced to nitrites; once nitrites have been formed they are reduced to  $NH_3$  and, to a minor extent, to  $N_2$ . Indeed the overall  $N_2$  selectivity is very poor, being below 20%. At this temperature near 80% of the initially adsorbed  $NO_2$  could be reduced by  $H_2$  (Fig. 4A).

Upon increasing the reaction temperature at 200  $^{\circ}$ C (Fig. 3B), the induction period almost disappeared, possibly indicating a faster reduction of nitrates to nitrites, and only a small and sharp  $H_2$  peak is observed upon admission of  $H_2$  to the reactor.  $N_2$ 



**Fig. 4.** Efficiency of  $NO_x$  removal (A) and amounts of  $N_2$  evolved during the rich phase (B) at various temperatures over the  $Pt-Ba/Al_2O_3$  catalyst upon reduction with  $H_2$  or  $NH_3$ .

formation is observed after the  $H_2$  peak, followed by  $NH_3$  evolution which is seen in correspondence of  $H_2$  breakthrough.

For further increase of the reduction temperature the initial  $\rm H_2$  peak is no longer observed:  $\rm H_2$  is fully consumed and  $\rm N_2$  formation is immediately observed upon  $\rm H_2$  admission, with no delay. Ammonia evolution always follows that of  $\rm N_2$  and is accompanied by the detection of unconverted  $\rm H_2$ .  $\rm NH_3$  formation significantly decreases with temperature, so that at the maximum investigated temperature (300 °C) negligible amounts of ammonia have been detected.

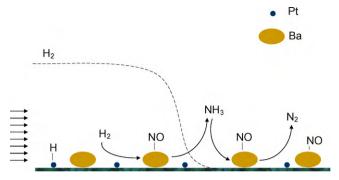
When the reduction of the stored nitrates is carried out with NH $_3$  (Fig. 3, right panel), only N $_2$  has been observed within the products at the reactor outlet. As opposite to H $_2$ , at 150 °C the reactivity of ammonia in the reduction of the stored nitrates is very poor. Only minor amounts of N $_2$  are detected upon NH $_3$  addition (near 50–100 ppm) because the reaction is under kinetic control and is limited by the reactivity of ammonia. The reaction proceeds for several minutes (nearly 1 h) and then the N $_2$  concentration drops to zero (not shown in the figure due to the limited time span). At the end of the reduction process near than 50% of the initially adsorbed nitrates have been reduced (Fig. 4A).

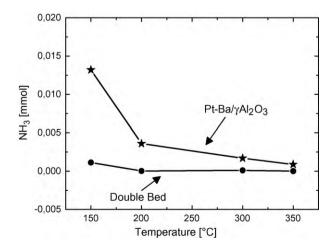
Upon increasing the reduction temperature at 200 °C, the stored  $NO_x$  are readily reduced to  $N_2$ : in fact upon the step addition of  $NH_3$  at t=0 s ammonia is completely consumed and the  $N_2$  outlet concentration immediately increases to a level near 800 ppm. This concentration value corresponds to that expected from the reduction of nitrates by  $NH_3$  according to the stoichiometry of reaction (6). Roughly 80% of the initially adsorbed nitrates have been removed at this temperature at the end of the reduction (Fig. 4A).

Upon further increase of the reduction temperature (300  $^{\circ}$ C) the reaction becomes even faster: the NH<sub>3</sub> breakthrough is shifted and becomes very sharp, in line with the effect of temperature on the rate of the reaction.

The results shown in Fig. 4A hence indicate that at low temperatures (150 °C)  $H_2$  is more reactive than  $NH_3$  in the reduction of adsorbed nitrates, at variance with that reported by Mulla et al. [9] who reported that  $NH_3$  is as effective than  $H_2$  in the regeneration of the stored  $NO_x$ . However, at higher temperatures the reactivity of  $H_2$  and of  $NH_3$  becomes similar, in line with the results of Mulla et al. [9]. Notably, at low temperatures  $NH_3$ , and not  $N_2$ , is formed when using  $H_2$  as a reductant. It is worth of note that comparable amounts of nitrogen are obtained upon reduction of stored nitrates with hydrogen and with ammonia at any temperature (Fig. 4B). This confirms that the reaction of ammonia with nitrates is rate determining in the two-step in-series process for nitrogen formation.

The two-step in-series pathway suggested for nitrogen formation from adsorbed nitrates accounts for the temporal evolution of the product selectivity which is observed during the experiments shown in Fig. 1, and for the increase in the selectivity of the reduction process with temperature as well. In fact, the occurrence of a fast reaction of H<sub>2</sub> with the stored NO<sub>x</sub> to give ammonia and the integral "plug-flow" behaviour of the reactor implies the complete consumption of the reductant H2 in the catalyst bed leading to the formation of an H2 front travelling along the reactor axis. As sketched in Fig. 5, at a given instant of the regeneration phase the initial part of the trap, upstream the H<sub>2</sub> front, has already been regenerated and the Ba storage sites have been restored in the form of BaO and/or Ba(OH)2. In the zone corresponding to the development of the H<sub>2</sub> front, the formation of ammonia due to reduction of nitrates by H2 (fast reaction) is taking place; the formed ammonia may compete with H<sub>2</sub> in the reduction of stored NO<sub>x</sub> in this part of the trap or may react with NO<sub>x</sub> stored in part of the trap immediately downstream the H<sub>2</sub> front, i.e. in the absence of  $H_2$ , if the temperature is high enough.





Fig. 5. Sketch of the reduction mechanism of the  $Pt-Ba/Al_2O_3$  LNT catalyst upon regeneration with  $H_2$ .

Finally in the last part of the trap the nitrates initially stored have not yet been reduced.

According to this picture, when the regeneration of the trap is carried out at low temperatures (150 °C),  $H_2$  reacts with surface  $NO_x$  to give  $NH_3$  according to reactions (1) and/or (3), and an  $H_2$  front develops. Due to the low temperature, ammonia can hardly react with the stored  $NO_x$  to form  $N_2$ , and this lead to the evolution of ammonia as major reaction product (Fig. 1A). When the  $H_2$  front reaches the end of the trap, the  $H_2$  breakthrough is observed and regeneration of the trap is completed.

Upon increasing the reaction temperature, the reactivity of  $NH_3$  with stored  $NO_x$  becomes appreciable and this leads to the formation of  $N_2$  which is indeed immediately detected at the reactor outlet (Fig. 1B). Since  $H_2$  is by far more reactive than  $NH_3$  towards surface nitrates, it is likely that  $NH_3$  reacts preferentially with nitrates located downstream the  $H_2$  front. This leads to a  $NH_3$  consumption and to an increase of the  $N_2$  selectivity. When the  $H_2$  front reaches the end of the trap, the  $H_2$  breakthrough is observed along with  $NH_3$ , being the regeneration of the trap completed. According to this mechanism  $N_2$  detection at the reactor outlet precedes that of  $NH_3$ .

Due to the occurrence of the suggested two-step in-series pathway for the reduction of stored  $NO_x$  by  $H_2$ , and because of the different temperature thresholds associated to the reactivity of  $H_2$  and  $NH_3$  with the stored  $NO_x$ , the release of  $NH_3$  (i.e. the  $NH_3$  slip) is more relevant at low temperatures in the case of the investigated  $Pt-Ba/Al_2O_3$  LNT catalyst sample. This is indeed apparent from Fig. 6 which shows that the amounts of ammonia released upon



**Fig. 6.** Amounts of NH<sub>3</sub> evolved during the rich phase upon reduction with H<sub>2</sub> at various temperatures over the Pt–Ba/Al<sub>2</sub>O<sub>3</sub> catalyst and over the Pt–Ba/Al<sub>2</sub>O<sub>3</sub>–Fe–ZSM5 double-bed arrangement.

regeneration of the stored  $NO_x$  significantly decreases on increasing the reaction temperature.

#### 3.2. Lean-rich operation over a double-bed LNT + SCR reactor

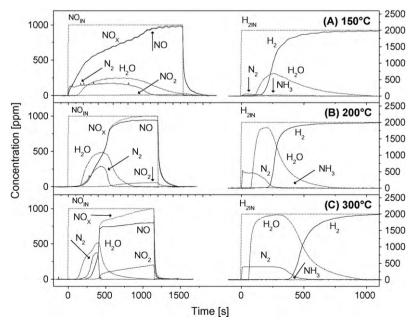
NH<sub>3</sub> which is released from the LNT catalyst during rich operation (in particular at low temperatures) due to its poor reactivity towards the stored NO, can be stored on a SCR catalyst located downstream the LNT catalyst bed. The stored ammonia can in principle react with NO<sub>x</sub> during the subsequent lean phase, with a double benefit of increasing the overall NO<sub>x</sub> removal efficiency and decreasing the NH<sub>3</sub> slip. To analyze these aspects, an in-series double-bed arrangement has been tested, in which a SCR sample (Fe-ZSM5) has been placed downstream the Pt-Ba/Al<sub>2</sub>O<sub>3</sub> LNT catalyst sample previously investigated. This catalyst configuration has been tested under the same experimental conditions adopted for the single Pt-Ba/Al<sub>2</sub>O<sub>3</sub> LNT catalyst layer.

Fig. 7A–C shows the results obtained during the  $NO_x$  storage-reduction experiments carried out over double-bed configuration at 150 °C, 200 °C and 300 °C, respectively. As in the case of the data shown in the case of the Pt–Ba/Al<sub>2</sub>O<sub>3</sub> LNT catalyst sample, also in this case the data shown in Fig. 7 have been obtained after catalyst conditioning, until a reproducible behaviour is obtained in the lean–rich cycles.

At the lowest investigated temperature (150 °C, Fig. 7A), upon NO admission to the reactor (t = 0 s) the NO breakthrough is immediately observed, as in the case of the single Pt-Ba/Al<sub>2</sub>O<sub>3</sub> catalyst layer. However, a slower increase of the NO<sub>x</sub> concentration trace with time is observed in this case (compares Figs. 1A and 7A), so that at the end of the lean phase a higher amount of NO<sub>x</sub> has been removed from the gas phase (Fig. 2). Notably, besides water, N<sub>2</sub> evolution is also observed during the lean phase, as opposite to what observed in the case of the single Pt-Ba/Al<sub>2</sub>O<sub>3</sub> catalyst (Fig. 1A). As will be discussed in the following, N<sub>2</sub> formation is related in this case to the reaction between NH<sub>3</sub> stored on the SCR catalyst bed during the previous rich phase and NO<sub>x</sub> not adsorbed on the Pt-Ba/Al<sub>2</sub>O<sub>3</sub> catalyst layer (see below).

After adsorption at 150 °C, the stored  $NO_x$  have been reduced with  $H_2$  at the same temperature (Fig. 7A). As apparent from the figure,  $H_2$  is completely consumed upon its admission to the

reactor, and its breakthrough is observed after 200 s. Upon  $H_2$  admission the evolution of minor amounts of  $N_2$  are observed at the reactor outlet, along with very small amounts of  $NH_3$ . Water is also formed during reduction, whereas no appreciable amounts of other products (e.g. NO and  $N_2O$ ) has been observed.


The overall H<sub>2</sub> consumption is much higher than that expected from the corresponding NH3 and N2 formation according to the stoichiometries of reactions (1)–(4). This fact, along with the absence at the reactor outlet of the relevant NH<sub>3</sub> amounts which instead have been observed in the case of the Pt-Ba/Al<sub>2</sub>O<sub>3</sub> single-bed arrangement (see Fig. 1), suggests that NH<sub>3</sub> which is released from the LNT catalyst during the rich phase is effectively retained over the Fe-ZSM5 SCR catalyst placed downstream. This makes almost negligible the NH<sub>3</sub> slip at this temperature (Fig. 6). As a matter of fact, the presence of ammonia stored in the reactor after regeneration with H<sub>2</sub> has been proved by dedicated TPD experiment carried out at the end of the rich pulse at selected temperatures (results not shown). These experiments showed the desorption of NH<sub>3</sub> in amounts comparable to those obtained during the rich phase of the Pt-Ba/ Al<sub>2</sub>O<sub>3</sub> single-bed reactor (Fig. 1). Since NH<sub>3</sub>-TPD experiments performed over the Pt-Ba/Al<sub>2</sub>O<sub>3</sub> sample pointed out that this catalyst has a negligible capacity to store NH3, it is concluded that ammonia is stored on the Fe-ZSM5 SCR catalyst, as expected.

Ammonia stored on the Fe-ZSM5 SCR catalyst is involved in the reduction of gaseous  $NO_x$  during the subsequent lean phase, as pointed out by the relevant  $N_2$  formation which accompanies the  $NO_x$  storage (see Fig. 7A, left panel). The reaction of gaseous  $NO_x$  with stored ammonia occurs according to the well-known stoichiometry of the SCR reaction:

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O \tag{7}$$

The occurrence of the SCR reaction is also pointed out by the detection of significant amounts of water during the lean phase.

Worth to note that in the case of the double-bed configuration, during the lean phase gas phase  $NO_x$  are removed both by adsorption on the LNT sample, and by reaction with ammonia over the SCR catalyst. Accordingly this leads to a significant increase in the  $NO_x$  removal efficiency as compared to the Pt-Ba/Al<sub>2</sub>O<sub>3</sub> single-bed arrangement particularly at low temperatures (Fig. 2). It is also



**Fig. 7.** Lean–rich cycles carried out over the Pt–Ba/Al $_2$ O $_3$ –Fe-ZSM5 double-bed arrangement at 150 °C (A), 200 °C (B) and 300 °C (C). Lean phase: 1000 ppm NO in He + 3% (v/v) O $_2$ ; rich phase: 2000 ppm H $_2$  in He. Catalyst loading 60 mg Pt–Ba/Al $_2$ O $_3$  + 60 mg Fe-ZSM5; flow rate 100 cm $^3$ /min (@ 1 atm and 0 °C).

worth to stress that at this temperature (150 °C) nitrogen is not formed during the rich phase, but during the lean cycle.

The increase of the reaction temperature (200 °C and 300 °C, Fig. 7B and C) enhances the  $NO_x$  removal efficiency during the lean phase (Fig. 2). This is due to the increase of the  $NO_x$  uptake with temperature of the  $Pt-Ba/Al_2O_3$  sample, since the amounts of  $N_2$  evolved in the lean phase (pointing out the occurrence of the SCR reaction over the Fe-ZSM5 catalyst) decreases. Notably, at these temperatures the fast-SCR reaction (8) is likely to occur, due to the formation of small amounts of  $NO_2$  formed upon NO oxidation on the  $Pt-Ba/Al_2O_3$  sample:

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O$$
 (8)

As a matter of fact,  $NO_2$  evolution is monitored in the case of the double-bed arrangement (Fig. 7) only after  $N_2$  formation, whereas the NO breakthrough is seen with  $N_2$  evolution (see e.g. Fig. 7C, left panel). This suggests that  $NO_2$  is readily involved in the SCR reaction with the stored  $NH_3$ , in line with the grater reactivity of the fast-SCR reaction (8) if compared to the standard SCR pathway (7) [16,17].

Finally, it is worth to note that no ammonia is seen during the rich phase at 200  $^{\circ}$ C and 300  $^{\circ}$ C: hence complete N<sub>2</sub> selectivity is attained during the reduction, and the NH<sub>3</sub> slip is negligible at all investigated temperatures.

Accordingly, upon comparing the data obtained in the case of the double-bed arrangement (Fig. 7) and over the Pt–Ba/Al $_2$ O $_3$  sample (Fig. 1), it clearly appears that the presence of a SCR catalyst layer placed downstream the LNT catalyst significantly increases the NO $_x$  removal efficiency and decreases the NH $_3$  slip. This is summarized in Figs. 2 and 6, which also point out that the observed differences are well evident at low temperatures, but tend to vanish on increasing the temperature.

The superior catalytic performances of the Pt-Ba/Al<sub>2</sub>O<sub>3</sub> + Fe-ZSM5 SCR double-bed arrangement at low temperature are due to the NH<sub>3</sub> trapping capacity and SCR-DeNO<sub>x</sub> activity of the SCR catalyst bed placed downstream the LNT catalyst. In fact as shown in Fig. 6, the LNT catalyst shows a significant NH<sub>3</sub> slip at low temperatures. The decrease of the ammonia slip in the case of the LNT + SCR arrangement is due to the trapping of NH<sub>3</sub> on the SCR catalyst bed. Ammonia which is stored on the SCR catalyst bed reacts with gaseous NO<sub>x</sub> during the subsequent lean period, due to the high activity of the Fe-ZSM5 catalyst in the SCR reaction. This leads to the consumption of NO<sub>x</sub> and to the corresponding formation of N2. Consequently in the case of the double-bed arrangement the NO<sub>x</sub> removal during the lean phase occurs according to two different routes, i.e. NO<sub>x</sub> adsorption (in the form of nitrite and nitrates) on the LNT catalyst, and reaction with stored NH<sub>3</sub> according to the SCR reaction over the Fe-ZSM5 sample. Indeed as shown by specific NO<sub>x</sub> adsorption experiments, not reported in the present work for the sake of brevity, the contribution of the Fe-ZSM5 sample to the storage of  $NO_x$  is negligible.

Since the  $NH_3$  slip from the LNT catalyst decreases on increasing the temperature, the contribution of the  $NO_x$  removal according to the SCR pathway decreases with temperature. This leads to a decrease of the amounts of nitrogen produced during the lean phase with temperature, and to a corresponding increase in the production of  $N_2$  during the rich phase.

## 4. Conclusions

The adsorption–reduction by  $H_2$  of  $NO_x$  stored on a model LNT Pt–Ba/Al<sub>2</sub>O<sub>3</sub> catalyst sample and on a combined LNT + Fe–ZSM5 SCR catalyst has been investigated in the present study. The storage of  $NO_x$  over the LNT Pt–Ba/Al<sub>2</sub>O<sub>3</sub> catalyst leads to nitrite

formation at low temperatures, and to nitrate at high temperatures (above 300 °C). The stored NO<sub>x</sub> are reduced mainly to NH<sub>3</sub> at low temperatures, and to N<sub>2</sub> at high temperatures. In line with previous data, and according to specific experiments with H<sub>2</sub> and NH<sub>3</sub> carried out in the present study, a two-step in-series pathway for nitrogen formation involving at first the formation of ammonia upon reaction of NO<sub>x</sub> with H<sub>2</sub>, followed by the slower reaction of the so-formed ammonia with the stored NO<sub>x</sub> to give N<sub>2</sub> has been proposed. Indeed different temperature thresholds for these two steps have been pointed out, with step 1 (reduction of the stored NO<sub>x</sub> to give ammonia) being much faster than step 2 (formation of nitrogen by reaction of ammonia with  $NO_x$ ). As a consequence, step 2 is rate determining in the formation of nitrogen so that under the experimental conditions adopted in the present study (i.e. nearly isothermal conditions) the reaction of ammonia with stored NO<sub>x</sub> does represent the major route for nitrogen formation.

The two-step in-series pathway described above together with the integral behaviour of the reactor is able to account for the temporal evolution of the products which is observed during regeneration of LNT catalysts. Indeed the occurrence of a fast reduction step of the adsorbed  $NO_x$  by  $H_2$  to give ammonia and the integral "plug-flow" behaviour of the reactor implies the complete consumption of the reductant  $H_2$  and the formation of an  $H_2$  front travelling along the reactor axis. Ammonia is readily formed upon reaction of  $H_2$  with the stored  $NO_x$ ; if the temperature is high enough ammonia reacts with  $NO_x$  left downstream the  $H_2$  front and this drives the selectivity to  $N_2$ , which is immediately observed at the reactor outlet. Accordingly the  $NH_3$  breakthrough is seen together or after the  $H_2$  breakthrough, i.e. when the  $H_2$  front reaches the end of the trap.

When the temperature is low the rate of  $NO_x$  reduction by  $H_2$  to give ammonia is slower, the hydrogen front is less steep and the reduction of stored nitrates by ammonia is significantly slower. As a result a small nitrogen selectivity is observed.

The presence of a Fe-ZSM5 SCR placed downstream the LNT catalyst is able to store  $\mathrm{NH_3}$  released during the rich phase from the LNT sample. The stored ammonia is effectively converted to  $\mathrm{N_2}$  during the subsequent lean phase, due to the occurrence of the SCR reaction over the SCR catalyst bed. Accordingly in the case of the double-bed arrangement the  $\mathrm{NO_x}$  removal during the lean phase follows two different routes, i.e.  $\mathrm{NO_x}$  adsorption (in the form of nitrite and nitrates) on the LNT catalyst, and reaction of NO with stored  $\mathrm{NH_3}$  according to the SCR reaction over the Fe-ZSM5 sample.

It is concluded that the presence of a SCR catalyst bed placed downstream a LNT sample leads to the double benefit of reducing the  $NH_3$  slip and to increase the  $NO_x$  removal efficiency: these advantages are particularly evident allow temperatures, where the  $NH_3$  slip from the LNT layer is significant, and tend to vanish at high temperatures where the  $NH_3$  slip is less important.

#### References

- [1] T. Johnson, Platinum Metals Rev. 52 (2008) 23.
- [2] W.S. Epling, L.E. Campbell, A. Yezerets, N.W. Currier, J.E. Park II, Catal. Rev. 46 (2004) 163.
- [3] P. Forzatti, L. Lietti, I. Nova, Energ. Environ. Sci. 1 (2008) 236.
- [4] S. Matsumoto, Catal. Technol. 4 (2000) 102.
- [5] L. Cumaranatunge, S.S. Mulla, A. Yezerets, N.W. Currier, W.N. Delgass, F.H. Ribeiro, J. Catal. 246 (2007) 29.
- [6] J.A. Pihl, J.E. Parks II, C.S. Daw, T.W. Root, SAE Technical Paper, 2006-01-3441 (2006).
- [7] L. Lietti, I. Nova, P. Forzatti, J. Catal. 257 (2008) 270.
- [8] I. Nova, L. Lietti, P. Forzatti, Catal. Today 136 (2008) 128.
- [9] S.S. Mulla, S.S. Chaugule, A. Yezerets, N.W. Currier, W.N. Delgass, F.H. Ribeiro, Catal. Today 136 (2008) 136.
- [10] T. Nakatsuji, M. Matsubara, J. Rouistenmaki, N. Sato, H. Ohno, Appl. Catal. B: Environ. 77 (2007) 190.

- [11] H. Gandhi, J.V. Cavataio, R.H. Hammerle, Y. Cheng, US Patent US2004/0076565 A1 (2004).
- [12] L. Lietti, P. Forzatti, I. Nova, E. Tronconi, J. Catal. 204 (2001) 175.
  [13] F. Prinetto, G. Ghiotti, I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, Phys. Chem. Chem. Phys. 5 (2003) 4428.
- [14] F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. B 105 (2001) 12732.
- [15] I. Nova, L. Castoldi, F. Prinetto, G. Ghiotti, L. Lietti, E. Tronconi, P. Forzatti, J. Catal. 222 (2004) 377.
- [16] A. Kato, S. Matsuda, T. Kamo, F. Nakajima, H. Kuroda, T. Narita, J. Phys. Chem. 85 (1981) 4099.
- [17] C. Ciardelli, I. Nova, E. Tronconi, B. Bandl-Konrad, D. Chatterjee, M. Weibel, B. Krutzsch, Appl. Catal. B: Environ. 70 (2007) 80.